direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C10×C42⋊2C2, (C2×C42)⋊4C10, (C4×C20)⋊49C22, C42⋊14(C2×C10), C24.14(C2×C10), (C2×C20).712C23, (C2×C10).348C24, (C23×C10).14C22, C22.22(C23×C10), C23.72(C22×C10), (C22×C10).86C23, (C22×C20).510C22, (C2×C4×C20)⋊6C2, (C2×C4⋊C4)⋊17C10, (C10×C4⋊C4)⋊44C2, C4⋊C4⋊13(C2×C10), (C5×C4⋊C4)⋊69C22, C2.11(C10×C4○D4), C10.230(C2×C4○D4), C22.34(C5×C4○D4), (C10×C22⋊C4).32C2, C22⋊C4.11(C2×C10), (C2×C22⋊C4).12C10, (C2×C4).16(C22×C10), (C2×C10).234(C4○D4), (C22×C4).102(C2×C10), (C5×C22⋊C4).145C22, SmallGroup(320,1530)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×C10 — C22×C10 — C5×C22⋊C4 — C5×C42⋊2C2 — C10×C42⋊2C2 |
Generators and relations for C10×C42⋊2C2
G = < a,b,c,d | a10=b4=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=bc2, dcd=b2c-1 >
Subgroups: 354 in 246 conjugacy classes, 162 normal (12 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C24, C20, C2×C10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊2C2, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C2×C42⋊2C2, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C22×C20, C23×C10, C2×C4×C20, C10×C22⋊C4, C10×C4⋊C4, C5×C42⋊2C2, C10×C42⋊2C2
Quotients: C1, C2, C22, C5, C23, C10, C4○D4, C24, C2×C10, C42⋊2C2, C2×C4○D4, C22×C10, C2×C42⋊2C2, C5×C4○D4, C23×C10, C5×C42⋊2C2, C10×C4○D4, C10×C42⋊2C2
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 123 62 147)(2 124 63 148)(3 125 64 149)(4 126 65 150)(5 127 66 141)(6 128 67 142)(7 129 68 143)(8 130 69 144)(9 121 70 145)(10 122 61 146)(11 78 153 100)(12 79 154 91)(13 80 155 92)(14 71 156 93)(15 72 157 94)(16 73 158 95)(17 74 159 96)(18 75 160 97)(19 76 151 98)(20 77 152 99)(21 82 34 106)(22 83 35 107)(23 84 36 108)(24 85 37 109)(25 86 38 110)(26 87 39 101)(27 88 40 102)(28 89 31 103)(29 90 32 104)(30 81 33 105)(41 112 59 134)(42 113 60 135)(43 114 51 136)(44 115 52 137)(45 116 53 138)(46 117 54 139)(47 118 55 140)(48 119 56 131)(49 120 57 132)(50 111 58 133)
(1 79 56 107)(2 80 57 108)(3 71 58 109)(4 72 59 110)(5 73 60 101)(6 74 51 102)(7 75 52 103)(8 76 53 104)(9 77 54 105)(10 78 55 106)(11 118 34 146)(12 119 35 147)(13 120 36 148)(14 111 37 149)(15 112 38 150)(16 113 39 141)(17 114 40 142)(18 115 31 143)(19 116 32 144)(20 117 33 145)(21 122 153 140)(22 123 154 131)(23 124 155 132)(24 125 156 133)(25 126 157 134)(26 127 158 135)(27 128 159 136)(28 129 160 137)(29 130 151 138)(30 121 152 139)(41 86 65 94)(42 87 66 95)(43 88 67 96)(44 89 68 97)(45 90 69 98)(46 81 70 99)(47 82 61 100)(48 83 62 91)(49 84 63 92)(50 85 64 93)
(11 153)(12 154)(13 155)(14 156)(15 157)(16 158)(17 159)(18 160)(19 151)(20 152)(21 34)(22 35)(23 36)(24 37)(25 38)(26 39)(27 40)(28 31)(29 32)(30 33)(71 85)(72 86)(73 87)(74 88)(75 89)(76 90)(77 81)(78 82)(79 83)(80 84)(91 107)(92 108)(93 109)(94 110)(95 101)(96 102)(97 103)(98 104)(99 105)(100 106)(111 149)(112 150)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 139)(122 140)(123 131)(124 132)(125 133)(126 134)(127 135)(128 136)(129 137)(130 138)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,123,62,147)(2,124,63,148)(3,125,64,149)(4,126,65,150)(5,127,66,141)(6,128,67,142)(7,129,68,143)(8,130,69,144)(9,121,70,145)(10,122,61,146)(11,78,153,100)(12,79,154,91)(13,80,155,92)(14,71,156,93)(15,72,157,94)(16,73,158,95)(17,74,159,96)(18,75,160,97)(19,76,151,98)(20,77,152,99)(21,82,34,106)(22,83,35,107)(23,84,36,108)(24,85,37,109)(25,86,38,110)(26,87,39,101)(27,88,40,102)(28,89,31,103)(29,90,32,104)(30,81,33,105)(41,112,59,134)(42,113,60,135)(43,114,51,136)(44,115,52,137)(45,116,53,138)(46,117,54,139)(47,118,55,140)(48,119,56,131)(49,120,57,132)(50,111,58,133), (1,79,56,107)(2,80,57,108)(3,71,58,109)(4,72,59,110)(5,73,60,101)(6,74,51,102)(7,75,52,103)(8,76,53,104)(9,77,54,105)(10,78,55,106)(11,118,34,146)(12,119,35,147)(13,120,36,148)(14,111,37,149)(15,112,38,150)(16,113,39,141)(17,114,40,142)(18,115,31,143)(19,116,32,144)(20,117,33,145)(21,122,153,140)(22,123,154,131)(23,124,155,132)(24,125,156,133)(25,126,157,134)(26,127,158,135)(27,128,159,136)(28,129,160,137)(29,130,151,138)(30,121,152,139)(41,86,65,94)(42,87,66,95)(43,88,67,96)(44,89,68,97)(45,90,69,98)(46,81,70,99)(47,82,61,100)(48,83,62,91)(49,84,63,92)(50,85,64,93), (11,153)(12,154)(13,155)(14,156)(15,157)(16,158)(17,159)(18,160)(19,151)(20,152)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39)(27,40)(28,31)(29,32)(30,33)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,81)(78,82)(79,83)(80,84)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(111,149)(112,150)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,139)(122,140)(123,131)(124,132)(125,133)(126,134)(127,135)(128,136)(129,137)(130,138)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,123,62,147)(2,124,63,148)(3,125,64,149)(4,126,65,150)(5,127,66,141)(6,128,67,142)(7,129,68,143)(8,130,69,144)(9,121,70,145)(10,122,61,146)(11,78,153,100)(12,79,154,91)(13,80,155,92)(14,71,156,93)(15,72,157,94)(16,73,158,95)(17,74,159,96)(18,75,160,97)(19,76,151,98)(20,77,152,99)(21,82,34,106)(22,83,35,107)(23,84,36,108)(24,85,37,109)(25,86,38,110)(26,87,39,101)(27,88,40,102)(28,89,31,103)(29,90,32,104)(30,81,33,105)(41,112,59,134)(42,113,60,135)(43,114,51,136)(44,115,52,137)(45,116,53,138)(46,117,54,139)(47,118,55,140)(48,119,56,131)(49,120,57,132)(50,111,58,133), (1,79,56,107)(2,80,57,108)(3,71,58,109)(4,72,59,110)(5,73,60,101)(6,74,51,102)(7,75,52,103)(8,76,53,104)(9,77,54,105)(10,78,55,106)(11,118,34,146)(12,119,35,147)(13,120,36,148)(14,111,37,149)(15,112,38,150)(16,113,39,141)(17,114,40,142)(18,115,31,143)(19,116,32,144)(20,117,33,145)(21,122,153,140)(22,123,154,131)(23,124,155,132)(24,125,156,133)(25,126,157,134)(26,127,158,135)(27,128,159,136)(28,129,160,137)(29,130,151,138)(30,121,152,139)(41,86,65,94)(42,87,66,95)(43,88,67,96)(44,89,68,97)(45,90,69,98)(46,81,70,99)(47,82,61,100)(48,83,62,91)(49,84,63,92)(50,85,64,93), (11,153)(12,154)(13,155)(14,156)(15,157)(16,158)(17,159)(18,160)(19,151)(20,152)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39)(27,40)(28,31)(29,32)(30,33)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,81)(78,82)(79,83)(80,84)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(111,149)(112,150)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,139)(122,140)(123,131)(124,132)(125,133)(126,134)(127,135)(128,136)(129,137)(130,138) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,123,62,147),(2,124,63,148),(3,125,64,149),(4,126,65,150),(5,127,66,141),(6,128,67,142),(7,129,68,143),(8,130,69,144),(9,121,70,145),(10,122,61,146),(11,78,153,100),(12,79,154,91),(13,80,155,92),(14,71,156,93),(15,72,157,94),(16,73,158,95),(17,74,159,96),(18,75,160,97),(19,76,151,98),(20,77,152,99),(21,82,34,106),(22,83,35,107),(23,84,36,108),(24,85,37,109),(25,86,38,110),(26,87,39,101),(27,88,40,102),(28,89,31,103),(29,90,32,104),(30,81,33,105),(41,112,59,134),(42,113,60,135),(43,114,51,136),(44,115,52,137),(45,116,53,138),(46,117,54,139),(47,118,55,140),(48,119,56,131),(49,120,57,132),(50,111,58,133)], [(1,79,56,107),(2,80,57,108),(3,71,58,109),(4,72,59,110),(5,73,60,101),(6,74,51,102),(7,75,52,103),(8,76,53,104),(9,77,54,105),(10,78,55,106),(11,118,34,146),(12,119,35,147),(13,120,36,148),(14,111,37,149),(15,112,38,150),(16,113,39,141),(17,114,40,142),(18,115,31,143),(19,116,32,144),(20,117,33,145),(21,122,153,140),(22,123,154,131),(23,124,155,132),(24,125,156,133),(25,126,157,134),(26,127,158,135),(27,128,159,136),(28,129,160,137),(29,130,151,138),(30,121,152,139),(41,86,65,94),(42,87,66,95),(43,88,67,96),(44,89,68,97),(45,90,69,98),(46,81,70,99),(47,82,61,100),(48,83,62,91),(49,84,63,92),(50,85,64,93)], [(11,153),(12,154),(13,155),(14,156),(15,157),(16,158),(17,159),(18,160),(19,151),(20,152),(21,34),(22,35),(23,36),(24,37),(25,38),(26,39),(27,40),(28,31),(29,32),(30,33),(71,85),(72,86),(73,87),(74,88),(75,89),(76,90),(77,81),(78,82),(79,83),(80,84),(91,107),(92,108),(93,109),(94,110),(95,101),(96,102),(97,103),(98,104),(99,105),(100,106),(111,149),(112,150),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,139),(122,140),(123,131),(124,132),(125,133),(126,134),(127,135),(128,136),(129,137),(130,138)]])
140 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4L | 4M | ··· | 4R | 5A | 5B | 5C | 5D | 10A | ··· | 10AB | 10AC | ··· | 10AJ | 20A | ··· | 20AV | 20AW | ··· | 20BT |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
140 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | C4○D4 | C5×C4○D4 |
kernel | C10×C42⋊2C2 | C2×C4×C20 | C10×C22⋊C4 | C10×C4⋊C4 | C5×C42⋊2C2 | C2×C42⋊2C2 | C2×C42 | C2×C22⋊C4 | C2×C4⋊C4 | C42⋊2C2 | C2×C10 | C22 |
# reps | 1 | 1 | 3 | 3 | 8 | 4 | 4 | 12 | 12 | 32 | 12 | 48 |
Matrix representation of C10×C42⋊2C2 ►in GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 23 | 0 | 0 | 0 |
0 | 0 | 23 | 0 | 0 |
0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 18 |
40 | 0 | 0 | 0 | 0 |
0 | 20 | 39 | 0 | 0 |
0 | 16 | 21 | 0 | 0 |
0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 32 |
40 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 40 | 0 |
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 20 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 40 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,23,0,0,0,0,0,23,0,0,0,0,0,18,0,0,0,0,0,18],[40,0,0,0,0,0,20,16,0,0,0,39,21,0,0,0,0,0,32,0,0,0,0,0,32],[40,0,0,0,0,0,32,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,40,0],[40,0,0,0,0,0,1,20,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,40] >;
C10×C42⋊2C2 in GAP, Magma, Sage, TeX
C_{10}\times C_4^2\rtimes_2C_2
% in TeX
G:=Group("C10xC4^2:2C2");
// GroupNames label
G:=SmallGroup(320,1530);
// by ID
G=gap.SmallGroup(320,1530);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,1688,3446,436]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b*c^2,d*c*d=b^2*c^-1>;
// generators/relations